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ABSTRACT: Accurately quantifying nitrate (NO3
−) loading from the

Mississippi River is important for predicting summer hypoxia in the Gulf of
Mexico and targeting nutrient reduction within the basin. Loads have
historically been modeled with regression-based techniques, but recent
advances with high frequency NO3

− sensors allowed us to evaluate model
performance relative to measured loads in the lower Mississippi River. Patterns
in NO3

− concentrations and loads were observed at daily to annual time steps,
with considerable variability in concentration-discharge relationships over the
two year study. Differences were particularly accentuated during the 2012
drought and 2013 flood, which resulted in anomalously high NO3

−

concentrations consistent with a large flush of stored NO3
− from soil. The

comparison between measured loads and modeled loads (LOADEST,
Composite Method, WRTDS) showed underestimates of only 3.5% across
the entire study period, but much larger differences at shorter time steps.
Absolute differences in loads were typically greatest in the spring and early summer critical to Gulf hypoxia formation, with the
largest differences (underestimates) for all models during the flood period of 2013. In additional to improving the accuracy and
precision of monthly loads, high frequency NO3

− measurements offer additional benefits not available with regression-based or
other load estimation techniques.

■ INTRODUCTION

The nitrogen (N) load from the Mississippi Riverwhich
drains 41% of the continental United Stateshas increased
significantly during the past 100 years and is one of the primary
causes of the summer hypoxia in the Gulf of Mexico.1,2 Nitrate
(NO3

−) has been the dominant form of increased N loading
since the 1970s.3 Accurately quantifying NO3

− loading to the
Gulf and understanding how it interacts with ocean processes
to determine the size of the hypoxic zone is a major objective of
the Mississippi River Action Plan, with a goal of reducing the 5-
year average size to 5000 km2 or less by 2015.4

The loads of NO3
− to the Gulf have historically been

modeled using a regression-based estimation technique
(LOADEST) that predicts nutrient concentrations through
time from relatively infrequent discrete samples and high
frequency discharge measurements.5 The output from this and
other regression-based models have not only been important
for predicting the size of the summer hypoxic zone,6 but it has
also been used to evaluate trends in nutrient loading over time7

and with climate variability.8 However, recent advances in in
situ NO3

− sensors provides an opportunity to measure changes
in concentration at much higher temporal frequencies (e.g.,

many times per hour or day). High frequency NO3
− data have

proven useful for quantifying diel and event N dynamics,9−11 as
well as for real-time monitoring of drinking water and
wastewater discharge. However, high frequency NO3

− data
may also improve the accuracy and precision of load estimates
by reducing sample bias and uncertainties inherent in
statistically modeled values.12

Here we present an analysis of high temporal frequency
NO3

− measurements in the lower Mississippi River at Baton
Rouge over two years (November 2011 to October 2013) and
compare measured NO3

− loads to those from three regression-
based load estimation models. This deployment captured a
transition from an extreme summer drought in 2012 to spring
flooding in 2013, a pattern which has been shown in previous
studies to result in large N loads to the Gulf of Mexico and
subsequently the largest hypoxic zones.3,13−16 The specific
objectives were to (1) assess the timing and magnitude of
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variability in NO3
− concentrations and loads in the lower

Mississippi River, and (2) compare measured monthly NO3
−

loads from the Mississippi River with modeled loads from three
regression-based techniques (LOADEST, Composite Method
and WRTDS) developed for use with relatively infrequent
discrete measurements. We also evaluate the benefits of high
frequency NO3

− data for understanding riverine N loading and
Gulf hypoxia. Addressing these objectives will highlight the
potential value of high temporal frequency data generated by
NO3

− sensors and may help with developing effective programs
to reduce nutrient loads.

■ MATERIALS AND METHODS
Site Description. The Mississippi River drains 41% of the

conterminous United States (3.27 × 106 km2) and includes all
or parts of 30 states. The river mainstem is 3700 km in length
and runs from the southern Canadian border to the Gulf of
Mexico. The climate, land use, soils and population vary widely
across the basin,3 but the dominant land use is agriculture (58%
of the basin area). Agricultural production is particularly intense
within the central part of the basin, which produces the
majority of the corn, soybeans, wheat, cattle, hogs and chickens
grown in the U.S. Other important land uses include range and
barren land (21%), woodland (18%), wetlands and water
(2.4%) and urban land (0.6%).3

An in situ NO3
− sensor was deployed in November 2011 in

the Mississippi River at Baton Rouge (USGS gage 07374000),
which is 370 km from the Gulf of Mexico and drains a total area
of 2.91 × 106 km2. Baton Rouge is 130 km below Old River
Control, where approximately 30% of the combined flow from
the Mississippi and Red Rivers is diverted to form the
headwaters of the Atchafalaya River. The deployment site is
also 52 km downstream of St. Francisville (USGS gage
07373420), a long-term USGS National Water Quality
Assessment (NAWQA) monitoring site on the Mississippi
River with a history of 30+ years of discrete water quality data
collection. The discharge at the Baton Rouge gage has been
measured since 2004 along with continuous water quality
measurements of dissolved oxygen, temperature, turbidity,
specific conductance and pH (YSI 6920 sonde; Yellow Springs,
OH).
High Frequency NO3

− Sensor Measurements. A
submersible ultraviolet nitrate analyzer (SUNA) with a 10
mm optical path length (Version 1; Satlantic, Nova Scotia,
Canada) was mounted on an instrument cage along with a
custom submersible CR1000 datalogger (Campbell Scientific,
Logan, Utah) and ancillary electronics. The instrument cage
was deployed vertically on a fixed I-beam from a pier on the
eastern bank of the Mississippi River and was maintained at a
fixed depth that ensured at least 1 m of water above the sensor
at all times. The SUNA collected data every 15 min initially, but
was later adjusted to measure every 3 h to conserve power
while still capturing the temporal variability in NO3

−

concentrations. The SUNA was operated in freshwater mode
(i.e., without bromide temperature compensation) and
included an external nylon brush wiper (Zebra-Tech, New
Zealand) that cleaned the optical windows prior to every
sampling interval. Sensors were checked for blanks and linearity
prior to and during deployment as described in Pellerin et al.17

In situ NO3
− concentrations were measured by the SUNA at

a sampling rate of ∼1 Hz over a 30 s burst window at each
sampling interval, which typically resulted in ∼20 measure-
ments of NO3

− concentrations per burst. Outliers within the

burst were eliminated based on the median absolute deviation18

and burst statistics (mean, median and standard deviations)
were calculated from the remaining data (typically >90% of the
initial burst data). Additional information that describes the
burst variability and spectral data such as the root-mean-square
error (RMSE) of the algorithm fit were used to flag erroneous
data from the time series, resulting in the elimination of
approximately 2% of the data from this record.
A regression of depth- and width-integrated discrete NO3

−

plus nitrite (NO2
−) concentrations with sensor NO3

−

concentrations on 25 dates covering a range of flow conditions
shows the two were strongly correlated (Figure 1), indicating

that the sensor measurements were representative of the cross-
sectional averaged concentrations. However, the data showed a
consistent instrument bias (overestimate) of +0.10 mg N/L
that was corrected for during postprocessing as described in
Pellerin et al.17 While the SUNA does not explicitly account for
absorbance by NO2

− in the range of 210−220 nm, the
concentration of NO2

− is almost always negligible in surface
waters and has little effect on reported N concentrations in the
Mississippi River (Supporting Information (SI) Table SI−S1).
Therefore, we hereafter refer to the sensor measurements as
“NO3

−” in units of mg N/L.
Discrete NO3

− Measurements. Depth- and width-
integrated discrete water quality samples (∼12−14 per year)
were collected at biweekly to bimonthly intervals approximately
150−2100 m upriver from the continuous monitoring location
at Baton Rouge. Water was composited from several locations
across the ∼900 m cross section of the river, processed and
stored at 4 °C until analyzed at the USGS National Water
Quality Laboratory for nitrate plus nitrite using the enzymatic
reduction method.19 Discrete samples were also collected on
adjacent days at the USGS station at St. Francisville
approximately 52 km upriver (07373420), which had nearly
identical NO3

− concentrations to Baton Rouge based on the
historical discrete record (y = 0.99x + 0.0074, R2 = 0.99; n =
120). Previous studies have shown that NO3

− currently makes
up approximately two-thirds of the total N load from the
Mississippi River, with the remaining load largely in dissolved
organic form.1,3

Measured NO3
− Loads. The daily NO3

− loads (kg N/day)
were calculated as a product of the daily mean NO3

−

concentration from sensor measurements and daily mean
discharge. The variability in discharge and NO3

− concentration
within a day was small (mean CV = 1.6 and 1.7%, respectively),

Figure 1. Relationship between in situ sensor NO3
− concentrations

and depth- and width-integrated discrete lab NO3
− concentrations

(mg N/L) in the Mississippi River at Baton Rouge (USGS gage
07374000) during the study period.
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resulting in a small percentage error that was incorporated into
the load error estimates described below. The daily load was
estimated for 9 days with missing NO3

− data (of the 724 day
record) based on the relationship between NO3

− load and daily
discharge on several days immediately before and after the
missing values. The measured monthly loads were calculated as
the sum of daily loads and were compared against modeled
monthly NO3

− loads.
Modeled NO3

− Loads. Three regression-based models
were used to estimate NO3

− loads in the lower Mississippi
River by developing a regression model against discharge, time,
and other user-specified data variables. Load Estimator
(LOADEST20) is an adjusted maximum likelihood estimator
(AMLE) method that uses additional flow terms from two
upstream stations (Mississippi River at Thebes and the Ohio
River at Grand Chain). The composite method21 is a hybrid
approach based on the AMLE estimates but includes a routine
for period-weighting residual concentrations. Additional
information and monthly loads from both LOADEST and
the composite method for the Mississippi River basin are
described in detail by Aulenbach et al.5 and are publically
available online.22 The Weighted Regression on Time,
Discharge, and Season (WRTDS23) is also a regression-based
approach, but it primarily differs from LOADEST and the
composite method in that the model coefficients vary for every
combination of discharge and time in the period of record.
Both LOADEST and the composite method were calibrated

against the current and previous four years of NO3
− data at St.

Francisville and discharge from the Mississippi River at Tarbert
Landing (US Army Corps of Engineers site 01100) to account
for a range of flow and NO3

− concentrations. WRTDS is
intended for use with data sets of more than about 200
observations of water quality over a time span of 20 years or
more,23 and we therefore used the discrete NO3

− record at St.
Francisville from 1967 to 2013 to estimate monthly loads
during the study period. All models generated mean monthly
load estimates, but only LOADEST included uncertainty
estimates (reported as standard errors and 95th percentile
confidence intervals).
Error Estimation for Measured Loads. The error in

NO3
− sensor concentrations and loads was estimated using a

root-mean-square error propagation approach24,25 based on the
following equation:

∑= + +E E E E( )nP 1
2

2
2 2

where Ep is the probability range in error, n is the total number
of sources of error, and E1...En are the potential sources of error.
The potential sources of error in NO3

− concentrations
included the following: (1) sensor electronic “noise”; (2)
variability in the parcel of water passing by the sensor during
the burst measurement period; (3) representativeness of the
sensor location in the channel; (4) deviation from validation
samples (e.g., discrete lab measurements); and (5) analytical
error in validation samples. Additional sources of uncertainty in
the daily loads included: (6) averaging of discharge and NO3

−

concentrations to daily values; and (7) integrated uncertainty in
discharge measurements. These errors were accounted for by
propagating the standard error in the 30 s sensor burst
measurement (excluding burst outliers) at each sampling
interval (1, 2), the residual standard error in the regression
between the validation (e.g., discrete) and sensor NO3

− data
(3−5), and the standard error in averaging NO3

− concen-
trations over a day (6). Error in discharge measurements has
not been determined for this site, but previous studies have
reported a typical error of 3−6% in large rivers26 and we use 5%
as a conservative estimate. Errors were calculated as standard
errors and reported here as percentage errors.
The estimated percent error in instantaneous sensor NO3

−

concentrations ranged from 1.5 to 19.7% (mean = ± 0.04 mg
N/L) and was largely attributed to the standard error of the
prediction between discrete laboratory NO3

− concentrations
and concurrent sensor measurements (r2 = 0.99, slope = 1, n =
25). The error estimates for daily NO3

− loads range from 5.2 to
20.3% per day (mean = 7.3%), with errors inversely related to
discharge. The error in monthly NO3

− loads ranged from 1.0 to
2.3% based on the daily NO3

− loads added in quadrature (e.g.,
the square root of the sum of the squared daily loads) and
assumed to be independent.

■ RESULTS AND DISCUSSION

Variability and Patterns in NO3
− Concentrations and

Loads. The NO3
− concentrations measured in situ in the

Mississippi River at Baton Range ranged from 0.22 to 2.97 mg
N/L during the study period (Figure 2), spanning nearly the
entire range observed in lower Mississippi River discrete
samples since 1980 (0.23−3.15 mg N/L, n = 361 at St.

Figure 2. Time series of discharge (m3/s) and discrete and high frequency NO3
− concentration (mg N/L) from November 2011 to November 2013

in the Mississippi River at Baton Rouge (USGS gage 07374000).
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Francisville; Figure 3). The measured high frequency NO3
−

concentrations were typically lowest in September and highest

in June or July, consistent with previous studies14,27,28 and
reflected the seasonality in precipitation, snowmelt runoff,
fertilizer applications and relative groundwater contributions to
the Mississippi River. The lowest concentration measured
during the 2012 drought (0.22 mg N/L in September 2012)
was similar to concentrations measured during the 1988
summer drought, suggesting that lower water depths and longer
water residence times associated with droughts may increase in-
stream N retention in both small headwater streams and larger
tributaries.29 The importance of N retention within the
mainstem of the Mississippi River was not explicitly evaluated
during this period, but other studies,29,30 coupled with a lack of
discernible diel NO3

− variability in our data, suggests that in-
stream primary production in the mainstem river is not a
dominant factor influencing NO3

− concentrations.
Despite a lack of diel patterns, the high frequency data

revealed considerable variability in both NO3
− concentrations

and concentration−discharge relationships over short (e.g.,
days to weeks) and longer (seasons to years) time scales. For
example, our data showed that NO3

− concentration changed in

the Mississippi River by more than 20% in a week without
concomitant changes in discharge (Figure 4), suggesting
somewhat rapid changes in the sources and processes
responsible for NO3

− transport in a large river. Establishing a
relationship between NO3

− concentration and discharge is
critical to regression-based load estimation modeling, but our
data showed NO3

− concentrations varying by 2 to 3-fold across
much of the hydrograph (Figure 3). This weak correlation was
also evident in the historical discrete sampling record (1980−
2013, Figure 3) and may be explained in part by the relative
timing of runoff from the higher NO3

− upper Mississippi River
basin and the lower NO3

− Ohio River basin.31,32 However, an
additional factor likely influencing NO3

− concentration
variability during our study was the accumulation of inorganic
N in soils during the drought period and the subsequent
flushing during the spring floods in 2013. This “memory effect”
has been well-documented by a number of previous studies in
the Mississippi River basin and is attributed to both increased
storage of applied N and reductions in crop uptake and yields
during droughts.3,8,13−16

The measured daily NO3
− loads at Baton Rouge ranged from

0.09 × 106 to 6.1 × 106 kg N per day for the study period, with
estimates of error ranging from 5.2% to 20.3% per day at high
and low flows, respectively (average = 7.3%). The discharge
explained 79−81% of the variability in the daily NO3

− loads in
2012 and 2013 water years (SI Figure SI-S1), which is
consistent with the results of other studies showing discharge
variability as the dominant driver of NO3

− loads in the lower
Mississippi River.13,15,16 Monthly NO3

− loads ranged from 4.6
× 106 to 147 × 106 kg N per month (1.0−2.3%; Figure 4), with
the highest load from May to July 2013. The measured monthly
NO3

− loads were in the highest or lowest 10% of historical
LOADEST monthly loads for several months during our study
period (Figure 4), highlighting the extreme conditions that
affected both runoff volumes and the accumulation and flushing
of NO3

− from soils as key drivers of variability in Mississippi
River NO3

− load.
Comparison of Modeled and Measured Loads. A

comparison of the modeled NO3
− loads with measured

(sensor) loads across the entire study period revealed
underestimates of only 3.5% for all three regression models,
but much larger percentage differences at monthly time steps
(Figure 5a). The absolute differences in loads (kg N/mo) were

Figure 3. Relationship between mean daily discharge (m3/s) and
mean daily NO3

− concentration (mg N/L) based on discrete data
(1980−2013, n = 361) and high frequency sensor data (2011−2013).
Arrows show the direction of the dominant direction in the hysteresis
(counterclockwise).

Figure 4. Monthly NO3
− loads (×106 kg N) and uncertainty from sensor measured values from November 2011 to November 2013. The dashed

line is the monthly LOADEST average from 1968 to 2010, and the shaded area represents the 10th and 90th percentiles over the same period.
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typically greatest during the spring and early summer (Figure
5b), with the largest load differences for all regression models
during the flood period of 2013 (May to June). While a
consistent bias in modeled monthly loads was not observed
across the entire period, all models tended to underestimate the
NO3

− load during the spring months critical to the formation of
Gulf hypoxia and overestimate loads during the rest of the year
(Figure 5).
The measured spring loads (May to June) in 2012 and 2013

were in the ninth and 85th percentiles of long-term LOADEST
loads near Baton Rouge, respectively (Figure 4). Such extreme
dry and wet periods are typically not well-represented with
historical data and can, therefore, be difficult to model with
regression-based load estimation techniques.33 For example,
Murphy et al.8 found that modeled (WRTDS) NO3

−

concentrations in the Mississippi River basin were 8−21%
lower than expected when the previous year was 50% wetter
than average. The large mass differences in the spring of 2013
clearly suggest the difficulty in predicting anomalously high
NO3

− concentrations following a drought. The duration of a
memory effect on riverine NO3

− loads is not known, although
Raymond et al.13 suggested that a significant fraction of
fertilizer N input is transported within 24 months in average-to-
wet years.
The modeled NO3

− loads also differed from one another as
has been observed for other model comparisons in the
Mississippi River basin and elsewhere.28,33−35 The composite
method monthly NO3

− loads were closest to measured loads
(Figure 5), suggesting that period-weighting (e.g., adjusting the
regression model predicted concentration to the observed
concentration on days when samples are collected21) improves
model accuracy during years with extreme climatic conditions.
This is particularly evident during the spring flush of 2013
where composite method loads were within 8% of the

measured NO3
− loads, while LOADEST and WRTDS differed

from measured monthly loads by up to −21 and −27%,
respectively (Figure 5).
While Gulf hypoxia models typically use regression model

output to estimate riverine N loads,1,27,36 loads estimated from
simple linear interpolation (e.g., daily discharge multiplied by
the linearly interpolated daily NO3

− concentrations between
discrete samples) using seasonally weighted samples in the
Mississippi River at Baton Rouge (n = 12−14 per year; Figure
2) were similar to the composite method loads and closer to
measured loads than WRTDS or LOADEST for most months
during our study (Figure 5). However, loads estimated by linear
interpolation can be particularly sensitive to the frequency and
distribution of samples,21 while regression models such as
LOADEST or WRTDS can predict loads with as few as 4−6
samples per year. Therefore, hybrid or adaptive modeling
approaches that are influenced less by the timing and number
of samples may become increasingly important in areas without
high frequency NO3

− monitoring given the projected changes
in the intensity of precipitation and frequency of large floods in
the Midwestern U.S.37,38

The error estimates for the measured monthly loads ranged
from 1.0−2.3% and accounted for errors associated with the
NO3

− measurements as well as estimated errors in discharge
(Figure 4). Of the regression models tested, error estimates are
only calculated by the LOADEST model given the nature of the
other two models.5,35 Similarly, error estimates are not typically
calculated with linear interpolation techniques. The LOADEST
monthly load errors computed using the method of Cohn et
al.39 were reported at 8−12% during our study period, but the
actual uncertainty may be higher given that errors in discharge
are not included (LOADEST incorporates the standard
regression assumption that all explanatory variables have zero
error) and also does not include errors due to model

Figure 5. Difference between the modeled NO3
− N loads (regression-based and linearly interpolated) and sensor measured NO3

− N loads expressed
as (a) a percentage deviation from measured monthly loads (%) and (b) a mass deviation from measured monthly loads (×106 kg N).
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misspecification (LOADEST incorporates the standard regres-
sion assumption that the model adequately describes the true
relationship between load and the explanatory variables).
Therefore, the high frequency NO3

− measurements appear to
be an effective way to improve the accuracy and reduce the
uncertainty inherent in modeling NO3

− loads to the Gulf of
Mexico.
Benefits of High Frequency Measurements for Under-

standing and Managing NO3
− Loads. Previous studies33,34

have highlighted concerns over the accuracy and precision of
monthly load estimates with regression-based models, which
can be very sensitive to regression model misspecification and
other violations of the standard regression assumptions
(particularly the assumption of residual error homoscedastic-
ity). Similarly, estimates of monthly loads using linear
interpolation between discrete samples can be particularly
sensitive to the timing and number of discrete samples.21

Therefore, continuously measuring NO3
− loads rather than

modeling them offers a number of potential benefits for
understanding and managing river N delivery to the Gulf.
Improved Accuracy of Monthly Loads. Improving the

accuracy of monthly NO3
− loads with high frequency

measurements may be beneficial for targeting and assessing
nutrient reduction strategies in the basin, as well as for refining
a key input (riverine N loads) to Gulf hypoxia models. The
observed differences between measured and modeled loads
using regression techniques are not unexpected given the
challenges of fitting linear-regression models to limited discrete
data sets and across all flow conditions. However, these
differences may be accentuated during extreme climatic
periodsas observed during the drought-to-flood years in
our studywhere concentrationdischarge relationships
(Figure 4) are not well-represented by historical data and are
particularly difficult to model.33 The NO3

− load estimates based
on a linear interpolation of discrete concentration data may
better characterize anomalies in NO3

− concentrations than
regression-based approaches, but that is entirely dependent on
the frequency and distribution of discrete samples.21

On a per sample basis, the cost of continuous NO3
−

monitoring in a large river like the Mississippi is very small
compared to discrete sample collection, which may cost up to
several thousand dollars per sample when factoring in
personnel, equipment and lab analyses. However, the current
costs associated with purchasing and maintaining in situ NO3

−

sensors will likely limit their spatial extent on the landscape in
the near future, highlighting the importance of continuing to
improve the accuracy of modeled load estimates. High
frequency NO3

− measurements may help in doing so by
providing temporally rich data sets that can be used to explore
the correlation structure in the model error terms40 (e.g.,
differences between measured and modeled values) at sites like
Baton Rouge. A clearer understanding of the timing and factors
resulting in model error at select sites may ultimately lead to
improvements in model applications to sites without high
frequency measurements.
Reduced Uncertainty in NO3

− Loads. While reducing the
uncertainty in NO3

− loads does not directly translate into
management actions, it does provide a number of important
benefits for decision makers and watershed managers. For
example, the small errors (±1.0−2.3%) in our monthly NO3

−

loads from high frequency measurements suggests that changes
related to basin management or climate change will be easier to
detect than with models that have significantly larger errors

(e.g., LOADEST) or errors that cannot be quantified (WRTDS
and composite method). Uncertainty in NO3

− loads has also be
shown to impact the performance of some numerical models of
Gulf hypoxia,41 although uncertainty in other input parameters
such as wind speed may have equal or greater importance.

New Insights into NO3
− Sources and Processes. High

frequency NO3
− measurements allow for a clearer picture of

temporal dynamics than is possible with the current generation
of regression models or period-weighted approaches. For
example, high frequency data show that NO3

− concentration
can change in the Mississippi River by more than 20% in a week
without concomitant changes in discharge (Figure 4),
suggesting somewhat rapid changes in the sources and/or
processes responsible for NO3

− transport in a large basin. High
frequency NO3

− measurements also suggested multiple
concerted flushing events in 2013 (May ninth, June 22nd and
July 12th), with the peak on June 22nd resulted in a daily NO3

−

load that was within 3% of the highest daily load calculated
from discrete samples (n = 361, 1980−2013) but at a discharge
that was 26% lower (SI Figure SI-S1). Quantifying these
dynamics at key locations in the basin and in real-time will
undoubtedly yield new insights into the sources and processes
controlling NO3

− transport within the basin, as well as inform
management actions targeted at reducing NO3

− loads to the
Gulf.

Implications for Gulf Hypoxia. Improved accuracy and
reduced uncertainty in riverine N loads should in theory
improve the ability to predict hypoxia given that riverine loads
are a key input to the Gulf hypoxia models. However, the
impact of variability in physical factors that affect ocean
circulation can play an equally important or greater role in
hypoxia formation. For example, the duration of upwelling-
favorable (E-W) winds explained 32% of the observed
variability in hypoxic area from 1985 to 2010 (hurricane
years excluded) compared to 31% explained by May NO3

−

loads.42 Similarly, Turner et al.6 found that the actual size of the
hypoxic zone was 68% of the predicted size during recent years
where tropic storms or strong winds occurred in the Gulf just
before or during the midsummer cruise (1997, 2003, 2005, and
2008−2011). Therefore, the challenges inherent in predicting
hypoxia and the frequency at which these events occurred
highlights a challenge that will not be alleviated with more
accurate N loading, but will instead require new hydrodynamic
and biogeochemical models that capture the complexities of
hypoxia formation in the Gulf.36,43

■ ASSOCIATED CONTENT

*S Supporting Information
Additional information on discrete N data, NO3

− loads by
different methods and discharge−load relationships are
available. This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: (916) 278-3167; fax: (916) 278-3071; e-mail:
bpeller@usgs.gov.

Notes
The authors declare no competing financial interest.

Environmental Science & Technology Article

dx.doi.org/10.1021/es504029c | Environ. Sci. Technol. 2014, 48, 12612−1261912617

http://pubs.acs.org
mailto:bpeller@usgs.gov


■ ACKNOWLEDGMENTS

This research was funded by the U.S. Geological Survey’s
National Water-Quality Assessment (NAWQA) Program. We
thank Stephen Huddleston, Scott Beddingfield and Todd
Baumann for help with data collection, as well as Brent
Aulenbach, Richard Coupe, Dennis Demcheck, Robert Hirsch,
Lori Sprague, Tim Cohn and Mike Woodside and three
anonymous reviewers for helpful discussion and feedback. The
use of brand names in this manuscript is for identification
purposes only and does not imply endorsement by the U.S.
Geological Survey.

■ REFERENCES
(1) Turner, R. E.; Rabalais, N. N.; Justic,́ D. Predicting the summer
hypoxia in the northern Gulf of Mexico: Riverine N, P and Si loading.
Mar. Pollut. Bull. 2006, 52, 139−148.
(2) Rabalais, N. N.; Turner, R. E.; Wiseman, W. J. Gulf of Mexico
hypoxia, a.k.a. “The dead zone. Annu. Rev. Ecol. Syst. 2002, 33, 235−
263.
(3) Goolsby, D. A.; Battaglin, W. A. Long-term changes in the
concentrations and load of nitrogen in the Mississippi River Basin,
USA. Hydrol. Process. 2001, 15, 1209−1226.
(4) Mississippi River/Gulf of Mexico Watershed Nutrient Task Force
Gulf Hypoxia Action Plan 2008 for Reducing, Mitigating, and Controlling
Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in
the Mississippi River Basin; U.S. Environmental Protection Agency,
Office of Wetlands, Oceans, and Watersheds: Washington, DC, 2008;
http://water.epa.gov/type/watersheds/named/msbasin.actionplan.
cfm.
(5) Aulenbach, B. T.; Buxton, H. T.; Battaglin, W. T.; Coupe, R. H.
Streamflow and nutrient loads of the Mississippi-Atchafalaya River Basin
and subbasins for the period of record through 2005, Open-File Report
2007−1080; U.S. Geological Survey: Reston, VA, 2007.
(6) Turner, R. E.; Rabalais, N. N.; Justic,́ D. Predicting summer
hypoxia in the northern Gulf of Mexico: Redux.Mar. Pollut. Bull. 2012,
64, 319−324.
(7) Sprague, L. A.; Hirsch, R. M.; Aulenbach, B. T. Nitrate in the
Mississippi River and its tribuaries, 1980 to 2008: Are we making
progress? Environ. Sci. Technol. 2011, 45, 7209−7216.
(8) Murphy, J. C.; Hirsch, R. M.; Sprague, L. A. Antecedent flow
conditions and nitrate concentrations in the Mississippi River Basin.
Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 11451−11484.
(9) Pellerin, B. A.; Saraceno, J.; Shanley, J. B.; Sebestyn, S. B.; Aiken,
G. R.; Wollheim, W. M.; Bergamaschi, B. A. Taking the pulse of
snowmelt: In situ sensors reveal seasonal, event and diurnal patterns of
nitrate and dissolved organic matter variability in an upland forest
stream. Biogeochemistry 2012, 108, 183−198.
(10) Pellerin, B. A.; Downing, B. D.; Kendall, C.; Dahlgren, R. A.;
Kraus, T. E. C.; Spencer, R. G.; Bergamaschi, B. A. Assessing the
sources and magnitude of diurnal nitrate variability in the San Joaquin
River (California) with an in-situ optical nitrate sensor and dual nitrate
isotopes. Freshwater Biol. 2009, 54, 376−387.
(11) Heffernan, J. B.; Cohen, M. J. Direct and indirect coupling of
primary production and diel nitrate dynamics in a subtropical spring-
fed river. Limnol. Oceanogr 2010, 55 (2), 677−688.
(12) Guo, Y.; Markus, M.; Demissie, M. Uncertainty of nitrate-N
load computations for agricultural watersheds.Water Resour. Res. 2002,
38 (10), 1185 2002. DOI: 10.1029/211WR001149.
(13) Raymond, P. A.; David, M. B.; Saiers, J. E. The impact of
fertilization and hydrology on nitrate loads from Mississippi
watersheds. Curr. Opin. Environ. Sustainability 2012, 4, 212−218.
(14) Justic,́ D.; Rabalais, N. N.; Turner, R. E. Coupling between
climate variability and coastal eutrophication: Evidence and outlook
for the northern Gulf of Mexico. J. Sea. Res. 2005, 54 (1), 25−35.
(15) Justic,́ D.; Turner, R. E.; Rabalais, N. N. Climate influences on
riverine nitrate load: Implications for coastal marine eutrophication
and hypoxia. Estuaries 2003, 26 (1), 1−11.

(16) David, M. B.; Drinkwater, L. E.; McIsaac, G. F. Sources of
nitrate yields in the Mississippi River Basin. J. Environ. Qual. 2010, 39,
1657−1667.
(17) Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.;
Garrett, J. D.; Olsen, L. D. Optical Techniques for the Determination of
Nitrate in Environmental Waters: Guidelines for Instrument Selection,
Operation, Deployment, Quality-Assurance, and Data Reporting;
Techniques and Methods Report 1-D5; U.S. Geological Survey:
Reston, VA, 2013.
(18) Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting
outliers: Do not use standard deviation around the mean, use absolute
deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764−766.
(19) Patton, C. J.; Kryskalla, J. R. Colorimetric Determination of Nitrate
Plus Nitrite in Water by Enzymatic Reduction, Automated Discrete
Analyzer Methods, Techniques and Methods Report 5-B8; U.S.
Geological Survey: Reston, VA, 2011.
(20) Runkel, R. L.; Crawford, C. G.; Cohn, T. A. Load Estimator
(LOADEST): A FORTRAN Program for Estimating Constituent Loads
in Streams and Rivers,; Techniques and Methods Report 4-A5; U.S.
Geological Survey: Reston, VA, 2004.
(21) Aulenbach, B. T.; Hooper, R. P. The composite method: An
improved method for stream-water solute load estimation. Hydrol.
Process. 2006, 20, 3029−3047.
(22) http://toxics.usgs.gov/hypoxia/mississippi/flux_ests/delivery/
index.html. Last accessed on July 1, 2014.
(23) Hirsch, R. M.; Moyer, D. L.; Archfield, S. A. Weighted
regressions on time, discharge, and season (WRTDS), with an
application to Chesapeake Bay River inputs. J. Am. Water Resour. Assoc.
2010, 1−24.
(24) Harmel, R. D.; Cooper, R. J.; Slade, R. M.; Haney, R. L.; Arnold,
J. G. Cumulative uncertainty in measured streamflow and water quality
data for small watersheds. Trans. ASABE 2006, 49 (3), 689−701.
(25) Topping, J. Errors of Observation and Their Treatment; Chapman
and Hall: London, U.K., 1972.
(26) Sauer, V. B.; Meyer, R. W. Determination of Error in Individual
Discharge Measurements, Open-File Report 92-144; U.S. Geological
Survey: Reston, VA, 1992.
(27) Greene, R. M.; Lehrter, J. C.; Hagy, J. D. Multiple regression
models for hindcasting and forecasting midsummer hypoxia in the
Gulf of Mexico. Ecol. Appl. 2009, 19 (5), 1161−1175.
(28) Duan, S.; Powell, R. T.; Bianchi, T. S. High frequency
measurement of nitrate concentration in the lower Mississippi River,
USA. J. Hydrol. 2014, http://dx.doi.org/10.1016/j.jhydrol.2014.07.
030.
(29) Alexander, R. B.; Smith, R. A.; Schwarz, G. E. Effect of stream
channel size on the delivery of nitrogen to the Gulf of Mexico. Nature
2000, 403, 758−761.
(30) Coupe, R. H.; Goolsby, D. A.; Battaglin, W. A.; Böhlke, J. K.;
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